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Abstract A low computational cost eighth algebraic order hybrid two-step method
with vanished phase-lag and its first, second, third and fourth derivatives is developed
in this paper.We also investigate the local truncation error, the stability and the result of
the elimination of the phase-lag and its derivatives on the effectiveness of the produced
method.
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1 Introduction

In this paper we study the numerical solution of special second order initial value
problems of the form:

y′′(x) = f (x, y), y(x0) = y0 and y′(x0) = y′
0 (1)

We are specially interested for problems of the form (1) with periodical and/or oscil-
lating solutions.

A characteristic of the problems of the form (1) is that the models of such problems
consist of systems of second order ordinary differential equations from which the first
derivative y′ does not appear explicitly.

Our basic idea is to introduce a hybrid method (multistage) with low number of
stages which has very important properties: (1) high algebraic order (2) vanished
phase-lag and (3) vanished derivatives of the phase-lag. More specifically in this paper
we introduce a two-step three stage method of eighth algebraic order with vanished
phase-lag and its first, second, third and fourth derivatives. With this procedure we
avoid the Runge–Kutta or Runge–Kutta–Nyström or Hybrid multistep methods which
in order to achieve the abo0ve mentioned properties need much more stages and/or
steps (see [52]) and therefore much more computational cost. The method is of low
computational cost since it is of only three stages.

The paper has the following form: The basic theory on the phase-lag analysis and the
direct formula for the computation of the phase0-lag of symmetric multistep methods
are presented in Sect. 2. In Sect. 3 we present the construction of the new hybrid eighth
algebraic order two-step method with vanished phase-lag and its first, second, third
and fourth derivatives. The error is studied in Sect. 4. More specifically, in this section
the local truncation error (LTE) of the new method is investigated using a model
problem. A comparative LTE analysis is also presented using other similar methods
of the literature. In Sect. 5 we study the stability of the new proposed method. More
precisely, in this section we define the stability area and the interval of periodicity of
the new producedmethod using a scalar test equation with frequency different than the
frequency of the scalar test equation used for the phase-lag analysis. The procedure
of the Local Error estimation is presented in Sect. 6.1. The Local Error Estimation
is based on similar methods with different algebraic order. The numerical solution of
the coupled differential equations arising from the Schrödinger equation is presented
in Sect. 6.2. Finally, conclusions are presented in Section.

Remark 1 It is noted that the approximate solution of the coupleddifferential equations
arising from the Schrödinger equation is an important problem for the computational
chemistry which is a part of information sciences.

2 Theory of the phase-lag analysis for symmetric 2 k-step methods

Let us consider the 2 k-Step methods
k∑

i=−k

ci yn+i = h2
k∑

i=−k

bi f (xn+i , yn+i ) (2)
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for the approximate solution of the initial value problem (1). The numerical solution of
the initial value problem (1) is based on the division of the are of integration [a, b] into
2 k equally spaced intervals i.e. {xi }k

i=−k ∈ [a, b]. The procedure we use continues
with the application of the method (2) within these intervals. The are of integration
[a, b] is defined based on the physical properties of the specific problem. The quantity
h is defined as h = |xi+1−xi |, i = 1−m(1)m−1 and is called stepsize of integration.
The multistep method given by (2)is called 2 k-step method since the number of steps,
which are used for the integration, is equal to 2 k.

Remark 2 Themethod (2) is called symmetric 2m-stepmethod if and only if c−i = ci

and b−i = bi , i = 0(1)m

Remark 3 The linear operator, which is associated with the Multistep Method (2), is
given by:

L(x) =
k∑

i=−k

ci y(x + ih) − h2
m∑

i=−m

bi y′′(x + ih) (3)

where y ∈ C2.

Definition 1 [1] The multistep method (2) is called algebraic of order m if the associ-
ated linear operator L given by (3) vanishes for any linear combination of the linearly
independent functions 1, x, x2, . . . , xm+1.

Application of the symmetric 2 k-step method, (i = −m(1)m), to the scalar test
equation

y′′ = −φ2 y (4)

leads to the following difference equation:

Ak(v) yn+k + · · · + A1(v) yn+1 + A0(v) yn + A1(v) yn−1 + · · · + Ak(v) yn−k = 0

(5)

where v = φ h, h is the stepsize and A j (v) j = 0(1)m are polynomials of v.
The associated characteristic equation to the difference Eq. (5) is given by:

Ak(v)λ
k + · · · + A1(v)λ + A0(v) + A1(v)λ

−1 + · · · + Ak(v)λ
−k = 0. (6)

Definition 2 [16] We say that a symmetric 2 k-step method with characteristic equa-
tion given by (6) has an interval of periodicity (0, v20) if, for all v ∈ (0, v20), the roots
λi , i = 1(1)2m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 k (7)

where θ(v) is a real function of v.

Definition 3 [14,15] For any symmetric multistep method which is associated to the
characteristic Eq. (6) the phase-lag is the leading term in the expansion of
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t = v − θ(v) (8)

The order of phase-lag is q, if the quantity t = O(vq+1) as v → ∞ is hold.

Definition 4 [2] A method is called phase-fitted if the phase-lag is vanished (i.e.
equal to zero).

Theorem 1 [14] The symmetric 2 k-step method with associated characteristic equa-
tion given by (6) has phase-lag order q and phase-lag constant c given by

−cvq+2 + O(vq+4) = P0

P1
(9)

where P0 = 2 Ak(v) cos(k v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v) and P1 =
2 k2 Ak(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v).

Remark 4 The formula (9) must be used for the direct calculation of the phase-lag for
any symmetric 2 k-step multistep method.

Remark 5 In our investigation we use symmetric two-step methods. Assuming that
their characteristic polynomials are given by A j (v) j = 0, 1, the phase-lag of order q
with phase-lag constant c are given by:

− cvq+2 + O(vq+4) = 2 A1(v) cos(v) + A0(v)

2 A1(v)
(10)

3 The low computational cost new proposed eighth algebraic order
hybrid two-step method with vanished phase-lag and its first, second,
third and fourth derivatives

Consider the hybrid family of two-step methods

ŷn+ 1
2

= 1

52

(
3 yn+1 + 20 yn + 29 yn−1

)

+ h2

4992

(
41 fn+1 − 682 fn − 271 fn−1

)

ŷn− 1
2

= 1

104

(
5 yn+1 + 146 yn − 47 yn−1

)

+h2
(
− 59

4992
fn+1 + a0 fn + 253

4992
fn−1

)

yn+1 + a1 yn + yn−1 = h2
[

b1 ( fn+1 + fn−1) + b0 fn + b2
(

f̂n+ 1
2

+ f n− 1
2

)]

(11)

where fi = y′′ (xi , yi ) , i = −1
(
1
2

)
1 and ai , i = 0, 1 b j j = 0(1)2 are free parame-

ters.
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Requesting the above hybrid method (11) to have vanished the phase-lag and its
first, second, third and fourth derivatives the following systemof equations is obtained:

Phase-Lag(PL) = 1

2

T0
T1

= 0 (12)

First Derivative of the Phase-Lag = ∂ P L

∂v
= 0 (13)

Second Derivative of the Phase-Lag = ∂2P L

∂v2
= 0 (14)

Third Derivative of the Phase-Lag = ∂3P L

∂v3
= 0 (15)

Fourth Derivative of the Phase-Lag = ∂4P L

∂v4
= 0 (16)

where

T0 = T0 = 2

(
1 + v2

(
b1 + b2

(
11

104
+ 3 v2

832

)))
cos (v)

+ a1 + v2
(

b0 + b2

(
93

52
+ 341 v2

2496
− v2a0

))

T1 = 1 + v2
(

b1 + b2

(
11

104
+ 3 v2

832

))

Solving the above system of Eqs. (12)–(16), we obtain the coefficients of the new
developed low cost hybrid method: a0, a1, b0, b1, b2. For the cases that the formulae
of the coefficients are subject to heavy cancelations for some values of |v| (for example
when for some values of |v| the denominators of the formulae of the coefficients are
equal to zero), Taylor series expansions should be used.

In Fig. 1 we present the behavior of the coefficients of the new method.
The LTE of the new cost method (11) (mentioned as ExpT woStepLC H8) is given

by:

LT EExpT woStepLC H8 = 59

76204800
h10

(
y(10)

n + 5φ2 y(8)
n + 10φ4 y(6)

n + 10φ6 y(4)
n

+5φ8 y(2)
n + φ10 yn

)
+ O

(
h14

)
(17)

4 Local truncation error analysis

In this section we will investigate the behavior of the Local Truncation Error. We will
use the test problem

y′′(x) = (V (x) − Vc + G) y(x) (18)
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Fig. 1 Behavior of the coefficients of the new proposed method for several values of v = φ h.

where (1) V (x) is a potential function, (2) Vc is the constant value approximation of
the potential on the specific point x , (3) G = Vc − E and (4) E is the energy.

We will study the LTE of the following methods:

4.1 Classical method (i.e. the method (11) with constant coefficients)

LT EC L = 59

76204800
h10 y(10)

n + O
(

h14
)

(19)

4.2 The new proposed method with vanished phase-lag and its first, second,
third and fourth derivatives produced in Sect. 3

LT EExpT woStepLC H8 = 59

76204800
h10

(
y(10)

n + 5φ2 y(8)
n + 10φ4 y(6)

n

+ 10 φ6 y(4)
n + 5φ8 y(2)

n + φ10 yn

)
+ O

(
h14

)
(20)

Below we describe our analysis:

– Since the formulae of the LTE consist of the derivatives of the function y, we
compute the expressions of these derivatives based on the test problem (18). Some
of the expressions of the derivatives of the function y are given in the “Appendix”.
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– The new formulae of the LTE are based on the expressions of the derivatives of
the function y given in the “Appendix” and are dependent on the quantity G and
energy E .

– Our study is based on two cases for the parameter G:
1. First case: Vc − E = G ≈ 0. This means that the Energy and the Potential

are closed each other. Therefore, all the terms of Gn n ≥ 1 are approximately
equal to zero. Consequently, all the terms in the formulae of the LTE which
contain Gn n ≥ 1 are approximately equal to zero. Therefore, for this case
the LTE is equal with the term which contain only the power of G0 i.e. which
contain free from G terms. Since the free from G term of the LTE formula for
the classical method (constant coefficients) is equal with the free from G term
of the local truncation error formula for the methods with vanished the phase-
lag and its first, second, third and fourth derivatives, the asymptotic behavior
of the LTE for the classical method and the asymptotic behavior of the LTE for
the methods with vanished the phase-lag and its first, second, third and fourth
derivatives is the same. Consequently, for these values of G, the methods are
of comparable accuracy.

2. G >> 0 or G << 0. Consequently, |G| is a large number. Therefore, the most
accurate methods are the methods with formula of the LTE which contain
minimum power of G.

– Finally the asymptotic expressions of the LTEs are presented.

The following asymptotic expansions of the LTEs are obtained based on the analysis
presented above:

4.3 Classical method

LT EC L = 59

4762800
h10

(
y (x) G5 + · · ·

)
+ O

(
h12

)
(21)

4.4 The new proposed method with vanished phase-lag and its first, second,
third, fourth and fifth derivatives produced in Sect. 3

LT EExpT woStepLC H8

= 59

76204800
h10

((
d4

dx4
g (x)

)
y (x) G2 + · · ·

)
+ O

(
h12

)
(22)

From the above analysis we have the following theorem:

Theorem 2 – Classical Method (i.e. the method (11) with constant coefficients):
For this method the error increases as the fifth power of G.

– Low Cost Eighth Algebraic Order Two-Step Method with Vanished Phase-lag and
its First, Second, Third and Fourth Derivatives developed in Sect. 3: For this
method the error increases as the Second power of G.
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So, for the approximate integration of the time independent radial Schrödinger
equation the New Obtained LOw Cost Eighth Algebraic Order Method with Vanished
Phase-Lag and its First, Second, Third and Fourth Derivatives is the most efficient
from theoretical point of view, especially for large values of |G| = |Vc − E |.

5 Stability analysis

In this section we will investigate the stability properties of the new obtained hybrid
method.

Let us consider the following scalar test equation:

y′′ = −ω2 y. (23)

Remark 6 The frequency of the scalar test equation for the stability analysis (ω) is
different from the frequency of the scalar test equation used for the phase-lag analysis
(φ) i.e. ω 	= φ.

Applying the new produced hybrid method to the scalar test Eq. (23) the following
difference equation is obtained:

A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (24)

where

A1 (s, v) = 1 + s2
(

b1 + 11 b2
104

)
+ 3 b2

832
s4

A0 (s, v) = a1 + s2
(

b0 + 93 b2
52

)
− s4

(
a0 b2 − 341

2496
b2

)
(25)

where s = ω h and v = φ h
We have the following definitions:

Definition 5 (see [16]) A multistep method is called P-stable if its interval of period-
icity is equal to (0,∞).

Definition 6 Amultistep method with interval of periodicity equal to (0,∞)− S 1 is
called singularly almost P-stable .

Remark 7 The term singularly almost P-stablemethod is appliedwhenω = φ i.e. only
in the cases when the frequency of the scalar test equation for the stability analysis is
equal with the frequency of the scalar test equation for the phase-lag analysis.

The s–v plane for the method obtained in this paper is shown in Fig. 2.

Remark 8 Based on the s–v region presented in Fig. 2: (1) Themethod is stable within
the shadowed area, (2) The method is unstable within the white area.

1 where S is a set of distinct points
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Fig. 2 s–v plane of the new obtained low cost two-step eighth algebraic order method with vanished
phase-lag and its first, second, third and fourth derivatives

Remark 9 Since themodels ofmany real problems in Sciences, Engineering andTech-
nology (for example the Schrödinger equation) consist only one frequency in the their
model, we are interested for the study of the stability of the proposed methods when
the frequency of the scalar test equation for the stability analysis is equal with the
frequency of the scalar test equation for the phase-lag analysis i.e. when ω = φ. Con-
sequently, in these cases the study of the s–v plane is limited on the the surroundings
of the first diagonal of the s–v plane i.e. on the areas where s = v.

Based on the above remark, we studied the case where s = v (i.e. see the surround-
ings of the first diagonal of the s–v plane). For our obtained method the interval of
periodicity is equal to: (0,∞), i.e. is P-stable.

The above investigation leads to the following theorem:

Theorem 3 The obtained method produced in Sect. 3:

– is of eighth algebraic order,
– has the phase-lag and its first, second, third and fourth derivatives equal to zero
– has an interval of periodicity equals to: (0,∞), i.e. is P-stable when the frequency

of the scalar test equation used for the phase-lag analysis is equal with the fre-
quency of the scalar test equation used for the stability analysis

– is low computational cost since has only 3 stages.
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6 Numerical results

6.1 Error estimation

In order to approximate the solution of a problem using variable-step algorithms, an
error estimation procedure is necessary. Much research has been done the last decades
on the estimation of the LTE for the numerical solution of systems of differential
equations (see for example [1–56]).

In the literature there are several methodologies for the local error estimation. One
of the most useful is the one which is based on the algebraic order of the methods.
The results of the methodologies for the local error estimation is an embedded pair.
Our embedded pair of multistep methods is based on the algebraic order and on the
fact that the maximum algebraic order of a multistep method produces highly accurate
numerical solutions for oscillatory and/or periodical problems.

The LTE in yL
n+1 is estimated by

LT E =| yH
n+1 − yL

n+1 | (26)

yL
n+1 denotes the lower order solution and we use for this the method developed in
[57], which is of sixth algebraic order and yH

n+1 denotes the higher order solution and
we use for this the method obtained in this paper, which is of eighth algebraic order.

The formula which gives the estimated step length for the (n + 1)st step, which
would give a local error equal to acc, is given by

hn+1 = hn

( acc

LT E

) 1
p

(27)

where p is the algebraic order of the method, hn is the step length used for the nth

step and acc is the requested accuracy of the local error.

Remark 10 Our technique for the LTE estimation is based on the lower algebraic
order solution yL

n+1. The procedure of performing local extrapolation is used in our
numerical tests. Therefore, we accept at each point the higher algebraic order solution
yH

n+1 while the local error is controlled in lower algebraic order solution yL
n+1 for an

estimation of the local error less than acc.

6.2 Coupled differential equations

There are lot of problems in

– quantum chemistry,
– material science,
– theoretical physics,
– atomic physics,
– physical chemistry,
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– theoretical chemistry and
– chemical physics

for which their models can be transferred in a coupled differential equations of the
Schrödinger type.

We write the close-coupling differential equations of the Schrödinger type as:

[
d2

dx2
+ k2i − li (li + 1)

x2
− Vii

]
yi j =

N∑

m=1

Vim ymj (28)

for 1 ≤ i ≤ N and m 	= i .
We will investigate the case in which all channels are open. Therefore, we have the

following boundary conditions: (see for details [59]):

yi j = 0 at x = 0 (29)

yi j ∼ ki x jli (ki x)δi j +
(

ki

k j

)1/2

Ki j ki xnli (ki x) (30)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.

Remark 11 We note here that the new obtained low cost method can also be used for
the case of closed channels.

The detailed analysis presented in [59] is our guideline for our application. We
define a matrix K ′ and diagonal matrices M, N as:

K ′
i j =

(
ki

k j

)1/2

Ki j

Mi j = ki x jli (ki x)δi j

Ni j = ki xnli (ki x)δi j

Based on the above we can write the asymptotic condition (30) as:

y ∼ M + NK′ (31)

Remark 12 The detailed presentation of the problem can be found in [59]. In the same
paper the well know Iterative Numerov method of Allison is also described.

The mathematical model of the real problem of rotational excitation of a diatomic
molecule by neutral particle impact can be transferred into close-coupling differential
equations of the Schrödinger type. This problem occurs frequently in quantum chem-
istry, theoretical physics, material science, atomic physics and molecular physics.
Denoting, as in [59], the entrance channel by the quantum numbers ( j, l), the exit
channels by ( j ′, l ′), and the total angular momentum by J = j + l = j ′ + l ′, we find
that
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[
d2

dx2
+ k2j ′ j − l ′(l ′ + 1)

x2

]
y J jl

j ′l ′ (x)

= 2μ

h̄2

∑

j ′′

∑

l ′′
< j ′l ′; J | V | j ′′l ′′; J > y J jl

j ′′l ′′(x) (32)

where

k j ′ j = 2μ

h̄2

[
E + h̄2

2I
{ j ( j + 1) − j ′( j ′ + 1)}

]
(33)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the
moment of inertia of the rotator, and μ is the reduced mass of the system.

As analyzed in [59], the potential V can be expanded as

V (x, k̂ j ′ j k̂ j j ) = V0(x)P0(k̂ j ′ j k̂ j j ) + V2(x)P2(k̂ j ′ j k̂ j j ), (34)

and the coupling matrix element may then be written as

< j ′l ′; J | V | j ′′l ′′; J >= δ j ′ j ′′δl ′l ′′ V0(x) + f2( j ′l ′, j ′′l ′′; J )V2(x) (35)

where the f2 coefficients can be obtained from formulas given by Bernstein et al. [60]
and k̂ j ′ j is a unit vector parallel to the wave vector k j ′ j and Pi , i = 0, 2 are Legendre
polynomials (see for details [61]). The boundary conditions are

y J jl
j ′l ′ (x) = 0 at x = 0 (36)

y J jl
j ′l ′ (x) ∼ δ j j ′δll ′ exp[−i(k j j x − 1/2lπ)]

−
(

ki

k j

)1/2

S J ( jl; j ′l ′) exp[i(k j ′ j x − 1/2l ′π)] (37)

where the scattering S matrix is related to the K matrix of (30) by the relation

S = (I + iK)(I − iK)−1 (38)

In order to compute the cross sections for rotational excitation of molecular hydro-
gen by impact of various heavy particles, an algorithm which includes a numerical
method for step-by-step integration from the initial value tomatching points is needed.
We use an algorithmwhich is based on the similar algorithmwhich has been produced
for the numerical tests of [59].

For numerical purposes we choose the S matrix which is calculated using the
following parameters

2μ

h̄2 = 1000.0,
μ

I
= 2.351, E = 1.1,

V0(x) = 1

x12
− 2

1

x6
, V2(x) = 0.2283V0(x).
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Table 1 Coupled differential
equations

Real time of computation (in
seconds) (RTC) and maximum
absolute error (MErr) to
calculate | S |2 for the
variable-step methods Method
I–Method V. acc=10−6. We
note that hmax is the maximum
stepsize

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2 × 10−3

9 0.014 23.51 5.7 × 10−2

16 0.014 99.15 6.8 × 10−1

Method II 4 0.056 1.55 8.9 × 10−4

9 0.056 8.43 7.4 × 10−3

16 0.056 43.32 8.6 × 10−2

Method III 4 0.007 45.15 9.0 × 100

9

16

Method IV 4 0.112 0.39 1.1 × 10−5

9 0.112 3.48 2.8 × 10−4

16 0.112 19.31 1.3 × 10−3

Method V 4 0.448 0.08 1.1 × 10−7

9 0.448 1.19 2.3 × 10−7

16 0.448 8.52 3.6 × 10−7

As is described in [59], we take J = 6 and consider excitation of the rotator from
the j = 0 state to levels up to j ′ = 2, 4 and 6 giving sets of four, nine and sixteen
coupled differential equations, respectively. Following the procedure obtained by
Bernstein [61] and Allison [59] the potential is considered infinite for values of x less
than some x0. The wave functions then zero in this region and effectively the boundary
condition (36) may be written as

y J jl
j ′l ′ (x0) = 0 (39)

For the numerical solution of this problem we have used the most well known
methods for the above problem:

– the Iterative Numerov method of Allison [59] which is indicated as Method I,
– the variable-step method of Raptis and Cash [58] which is indicated as Method
II,

– the embedded Runge–Kutta Dormand and Prince method 5(4) [51] which is indi-
cated as Method III,

– the embedded Runge–Kutta method ERK4(2) developed in Simos [62] which is
indicated as Method IV,

– the new obtained low cost embedded two-step method which is indicated as
Method V

The real time of computation required by themethods mentioned above to calculate
the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled differential
equations is presented in Table. In the same table the maximum error in the calculation
of the square of the modulus of the S matrix is also presented. In Table 1 N indicates
the number of equations of the set of coupled differential equations.
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7 Conclusions

A family of low computational cost eighth algebraic order hybrid two-step methods
was studied in the present paper. More specifically:

1. we investigated the vanishing of the phase-lag and its first, second, third and fourth
derivatives

2. we investigated the comparative LTE analysis
3. we studied the stability properties of the new low cost method using a scalar

test equation with frequency different than the frequency used by the scalar test
equation for the phase-lag analysis

4. we investigated the computational behavior of the new produced method and its
efficiency on the numerical solution of the coupled differential equations arising
from the Schrödinger equation.

As a conclusion of this study it is easy to see that the new obtained method is
much more efficient than known ones for the approximate solution of the Schrödinger
equation related problems..

All computations were carried out on a IBMPC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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8 Appendix: Formulae of the derivatives of qn

Formulae of the derivatives which presented in the formulae of the LTEs:

y(2)
n = (V (x) − Vc + G) y(x)

y(3)
n =

(
d

dx
g (x)

)
y (x) + (g (x) + G)

d

dx
y (x)

y(4)
n =

(
d2

dx2
g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x)

+ (g (x) + G)2 y (x)

y(5)
n =

(
d3

dx3
g (x)

)
y (x) + 3

(
d2

dx2
g (x)

)
d

dx
y (x)

+ 4 (g (x) + G) y (x)
d

dx
g (x) + (g (x) + G)2

d

dx
y (x)

y(6)
n =

(
d4

dx4
g (x)

)
y (x) + 4

(
d3

dx3
g (x)

)
d

dx
y (x)

+ 7 (g (x) + G) y (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

y (x)
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+ 6 (g (x) + G)

(
d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)3 y (x)

y(7)
n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4
g (x)

)
d

dx
y (x)

+ 11 (g (x) + G) y (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
y (x)

d2

dx2
g (x)

+ 13 (g (x) + G)

(
d

dx
y (x)

)
d2

dx2
g (x)

+ 10

(
d

dx
g (x)

)2 d

dx
y (x) + 9 (g (x) + G)2 y (x)

d

dx
g (x)

+ (g (x) + G)3
d

dx
y (x)

y(8)
n =

(
d6

dx6
g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x)

+ 16 (g (x) + G) y (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
y (x)

d3

dx3
g (x)

+ 24 (g (x) + G)

(
d

dx
y (x)

)
d3

dx3
g (x)

+ 15

(
d2

dx2
g (x)

)2

y (x) + 48

(
d

dx
g (x)

) (
d

dx
y (x)

)
d2

dx2
g (x)

+ 22 (g (x) + G)2 y (x)
d2

dx2
g (x) + 28 (g (x) + G) y (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)4 y (x) . . .
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